LIRE UN ARTICLE MÉDICAL

SÉANCE 7: NOTIONS UTILES, REVUES

PUISSANCE

Pour obtenir un résultat statistiquement significatif l'échantillon doit être suffisamment grand pour mesurer un effet;

Calcul de la taille d'échantillon (selon The Analysis Factor)

- Etablir un test d'hypothèse (null/alternative)
- 2. Etablir le niveau de significativité (ex p<0.05)
- 3. Etablir la taille d'effet minimal ayant un intérêt scientifique.
- Estimer les valeurs des autres paramètres nécessaires au calcul (écart type à partir de données pré-existantes)
- 5. Spécifier la puissance visée (0,8 ou 0,9)
- 6. Calculer

FIABILITÉ

Objectif: Eliminer toute erreur de mesure

Origine matérielle ou humaine

Points à observer

- Rapprochement temporel entre 2 tests identiques
- Degré de difficulté de deux tests espacés
- Homogénéité des questions (corrélation entre items)
- Accord entre évaluateurs

VALIDITÉ D'UNE ÉTUDE

Interne

 La conception, mise en oeuvre, et analyse des données doit éliminer tout biais, et les résultats doivent refléter la véritable association entre les variables

Externe

Les résultats sont applicables à une population plus large

Il est difficile d'atteindre un degré élevé de validité externe et interne.

VALIDITÉ D'UN TEST

Une mesure doit mesurer ce qu'elle prétend mesurer

• Ex. tester la rétention de qqch ne teste pas la capacité à l'appliquer

Surface (face validity)

Test semble répondre aux besoins

Contenu (content validity)

• Items représentatifs de l'ensemble du domaine

Critère (criterion validity)

- Prévision (predictive validity) test peut prévoir B à partir de A
- · Comparaison (concurrent validity) test concordant avec test déjà éprouvé

POUR VÉRIFIER FIABILITÉ ET VALIDITÉ

- Détails de méthodes de recueil donnés?
- Variables définies ?
- Détails des mesures identifiables?
- Intervalles entre mesures expliquées?

	Fiabilité	Validité
Qu'est ce qu'elle indique?	Le degré auquel on peut reproduire les résultats lorsque l'étude est menée une seconde fois dans les mêmes conditions.	Le degré auquel les résultats mesurent vraiment ce qu'ils sont censés mesurer.
Comment on peut l'évaluer ?	En vérifiant la cohérence des résultats dans le temps, avec différents évaluateurs, et entre les différentes parties du test.	En vérifiant le degré de concordance avec des théories éprouvées et d'autres mesures da la même notion.
Comment les différencier?	Une mesure fiable n'est pas toujours valide. Les résultats pourront être reproductibles, mais ils ne sont pas nécessairement justes.	Une mesure valide est généralement fiable également: si un test produit des résultats justes, ceux-ci devraient être reproductibles.

RELIABILITY VS. VALIDITY

LA REVUE (REVIEW ARTICLE)

Définition

Un article fondé sur des recherches déjà publiées

Fonctions

- Synthétiser
- Organiser
- Évaluer
- Faire ressortir des tendances
- Mettre en évidence des besoins

TYPES DE REVUE

Theory/model – présentation d'une nouvelle théorie ou schéma

Issue – enquête sur une question ou débat

Narrative – comparaison et résumé, approche qualitative

Status quo – état des connaissances sur un sujet

History – exploration **chronologique** d'un domaine

Best evidence – études ciblées, approche méthodique

Systematic – analyse statistique d'études, méta-analyse

TABLE 1 Differences between a systematic review and a narrative review (based on Cook et al.8)

Feature	Narrative review	Systematic review
question	often broad in scope	often a focused clinical question
sources and search	not usually specified, potentially biased	comprehensive sources and explicit search strategy
selection	not usually specified, potentially biased	criterion-based selection, uniformly applied
appraisal	variable	rigorous critical appraisal
synthesis	often a qualitative summary	quantitative summary
inferences	sometimes evidence-based	usually evidence-based

LA REVUE SYSTÉMATIQUE

Utilise une méthodologie rigoureuse pour

- Faire face à l'explosion de publications
- Faire ressortir des pistes
- Evaluer des publications discordantes

VUE SCHÉMATIQUE

Identification de la problématique	
Ecriture d'un protocole	
Interrogation des bases de données	
Selection des articles	
Extraction d'information et/ou données	
Analyse de la qualité des articles	
Agrégation des données si besoin	
Interprétation et conclusion	
Dissemination	

METHODOLOGIE

Cochrane

http://handbook.cochrane.org/

PRISMA

Checklist (2009) http://www.prisma-statement.org/

GRADE – analyse et comparaison des études

http://www.gradeworkinggroup.org/

Evaluer

- la méthodologie
- la cohérence entre études
- la généralisabilté des résultats
- l'efficacité des traitements

AVANTAGES

Méthodologie rigoureuse qui prend en compte le risque de biais des sources

Approche globale et compréhensive

Analyse fine des effets et de la généralisabilité

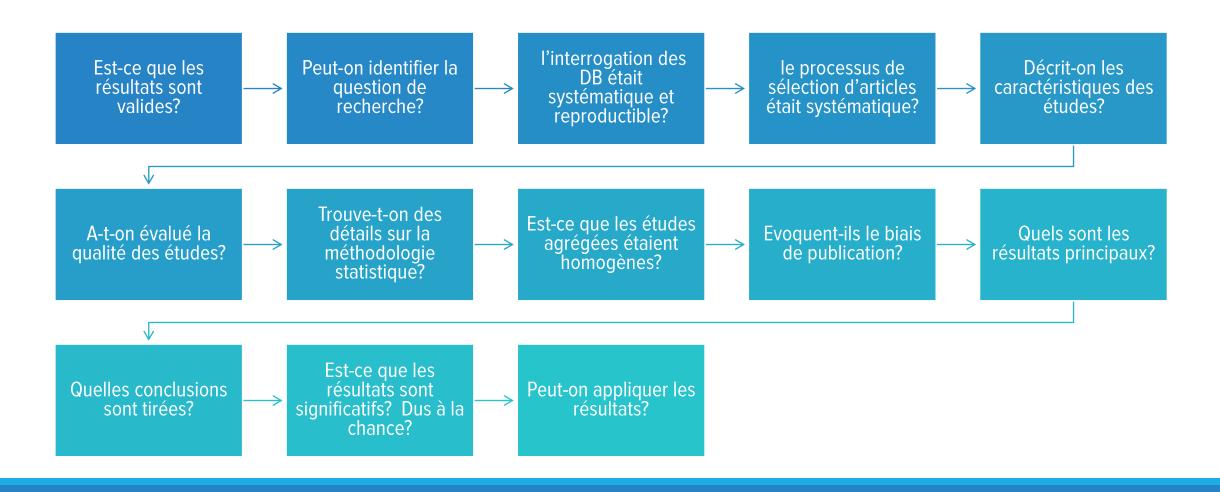
Inclusion des sources primaires à haut niveau de preuve

Existence de directives (PRISMA, Cochrane Handbook, GRADE)

INCONVÉNIENTS

Chronophage → Risque de obsolescence dès la publication

80 revues systématiques publiées chaque jour - problème de suivi des connaissances / risque de doublons


Publications peu utiles / publier ou périr

Sources difficilement comparables

Méthodologie parfois trop peu rigoureuse.

Biais de publication

QUESTIONS POUR L'ANALYSE

A FAIRE	A ÉVITER
Vérifier la focalisation de la question de recherche	Supposer qu'il y ait toujours une pertinence clinique
Vérifier la présence des critères d'inclusion et d'exclusion	Accepter les conclusions sans analyser la méthodologie
Vérifier la méthodologie de l'interrogation des bases de données	Faire l'impasse sur la vérification de la méthodologie d'analyse statistique
S'assurer que les auteurs limitent le risque de biais	Accepter les conclusions comme le dernier mot
Vérifier que la qualité des articles est évaluée	
Vérifier la prise en compte d'hétérogénéité des articles	
Evaluer la pertinence clinique	

EXERCICE D'APPLICATION