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Lions and tigers, and bears, oh my!― Dorothy, the Tin Man, and 
the Scarecrow

L. Frank Baum (1900), The Wonderful Wizard of Oz

In this basic statistical tutorial, we discuss the complex yet 
important, plus often misunderstood, topics of: (1) ran-
dom error (chance) versus systematic error (bias); (2) com-

mon types of study bias; (3) confounding; and (4) interaction.

RANDOM ERROR VERSUS SYSTEMATIC ERROR 
(SYSTEMATIC BIAS)
Epidemiologists seek to make a valid inference about the 
causal effect between an exposure and a disease in a specific 

population, using representative sample data from a specific 
population.1,2 Clinical researchers likewise seek to make a 
valid inference about the association between an interven-
tion and outcome(s) in a specific population, based upon 
their randomly collected, representative sample data.3 Both 
do so by using the available data about the sample variable 
to make a valid estimate about its corresponding or under-
lying, but unknown population parameter.4–6

The relationship between the observed estimate, the 
population parameter, the random error, and the systematic 
error can be represented as a simple equation (Figure 1).7

Random Error
Random error in an experiment can be due to the natural, 
periodic fluctuation or variation in the accuracy or preci-
sion of virtually any data sampling technique or health 
measurement tool or scale.8 Random error is equally likely 
to distort study measurements in either a positive or nega-
tive direction.9

For example, a conventional manual sphygmomanom-
eter reports the systolic blood pressure to be ±20 mm Hg, 
from moment to moment, due to respiration, emotion, exer-
cise, meals, tobacco or alcohol use, body temperature, blad-
der distension, pain, and circadian rhythm.10

In a clinical research study, random error can be due to 
not only innate human variability but also purely chance.9,11 

Epidemiologists seek to make a valid inference about the causal effect between an exposure 
and a disease in a specific population, using representative sample data from a specific popula-
tion. Clinical researchers likewise seek to make a valid inference about the association between 
an intervention and outcome(s) in a specific population, based upon their randomly collected, 
representative sample data. Both do so by using the available data about the sample variable to 
make a valid estimate about its corresponding or underlying, but unknown population parameter. 
Random error in an experiment can be due to the natural, periodic fluctuation or variation in the 
accuracy or precision of virtually any data sampling technique or health measurement tool or scale. 
In a clinical research study, random error can be due to not only innate human variability but also 
purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling 
technique or measurement instrument. In the clinical research setting, systematic error is more 
commonly referred to as systematic bias. The most commonly encountered types of bias in anes-
thesia, perioperative, critical care, and pain medicine research include recall bias, observational 
bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. 
A confounding variable is a factor associated with both the exposure of interest and the outcome 
of interest. A confounding variable (confounding factor or confounder) is a variable that correlates 
(positively or negatively) with both the exposure and outcome. Confounding is typically not an issue 
in a randomized trial because the randomized groups are sufficiently balanced on all potential con-
founding variables, both observed and nonobserved. However, confounding can be a major problem 
with any observational (nonrandomized) study. Ignoring confounding in an observational study will 
often result in a “distorted” or incorrect estimate of the association or treatment effect. Interaction 
among variables, also known as effect modification, exists when the effect of 1 explanatory variable 
on the outcome depends on the particular level or value of another explanatory variable. Bias and 
confounding are common potential explanations for statistically significant associations between 
exposure and outcome when the true relationship is noncausal. Understanding interactions is vital 
to proper interpretation of treatment effects. These complex concepts should be consistently and 
appropriately considered whenever one is not only designing but also analyzing and interpreting 
data from a randomized trial or observational study.  (Anesth Analg 2017;125:1042–8)
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Random error is nothing more than variability in the sam-
ple data that cannot be readily explained.12 However, the 
amount of such random error can be mathematically esti-
mated and adjusted for statistically.12 The methods for 
doing so will be the topics of future statistical tutorials.

Systematic Error (Systematic Bias)
Systematic error in an experiment arises from an innate 
flaw in the data sampling technique or measurement instru-
ment.8 Systematic error is nonrandom variation that distorts 
the research study findings in 1 direction.9

For example, a conventional manual sphygmomanom-
eter consistently reports the systolic blood pressure to 
be 10–20 mm Hg greater than its true value when a cuff 
size is used that is too small relative to the patient’s arm 
circumference.13

In the clinical research setting, systematic error is more 
commonly referred to as systematic bias. This systematic 
error or bias results in an incorrect (invalid) estimate of 
the measure of association or treatment effect.14 Such sys-
tematic bias thus undermines the internal validity of the 
study (ie, whether it actually and accurately measured 
what it set out to).14,15 If its presence is recognized, the 
amount of some forms of systematic error or systematic 
bias can be mathematically estimated and adjusted for 
statistically. However, unlike in conventional epidemio-
logical studies, this is not as commonly done in random-
ized controlled trials.

Effect of Sample Size
As the study sample size increases, the effect of random 
error or chance typically decreases (Figure  2).16 Thus, a 
larger sample size typically results in a more precise esti-
mate of the primary outcome or relationship of interest.9 
In contrast, because its adverse effect is essentially fixed, 
systematic error or bias typically does not change with an 
increasing sample size (Figure 2).9,16

COMMON TYPES OF STUDY BIAS
There are 3 main mechanisms through which bias is intro-
duced into health care–related research: (1) factors that 
relate to the exposure of patients to treatments in the study 
population; (2) factors that influence inclusion of patients 
in the study; and (3) factors that affect the assessment and 
measurement of outcomes.17 A myriad of over 70 potential 
types and sources of bias exist in conducting human sub-
jects research.18 However, we have elected to focus here on 
a handful of the most commonly encountered types of bias 
in anesthesia, perioperative, critical care, and pain medicine 
research (Table).

Recall Bias
Recall bias is a form of information bias. Recall bias occurs 
when 1 study group or subgroup has a differential recall 
of exposures or events prior to the onset of a disease.19 
Differential recall between study groups is especially a con-
cern with a retrospective case–control study.20,21 Compared 
to controls without the disease, cases with the disease are 
more likely to provide an extensive and complete report of 
their true exposure to a hypothesized risk factor, thereby 
biasing upwards the estimate of its effect.20,21

A number of factors can influence study participant 
recall. Cases tend to search their memories to identify what 
might have caused their disease; healthy controls have no 
such motivation.19 Past exposures may be more meaning-
ful and hence apparent to cases, possibly because of their 
greater awareness of potential risk factors for their condition 
or because of repeated physician interviews.22 Conversely, 
controls may have had less contact with health care pro-
viders and be less sensitized to questions about previous 
exposures.22

In an effort to minimize recall bias in a case–control 
study: (1) investigators should blind the data gatherers to 
the case or control status of participants, or if not possible, 
at least blind them to the main study hypothesis; (2) data 

Figure 1. The relationship between 
the observed estimate, the population 
parameter, the random error, and the 
systematic error.7

Figure 2. The relationship between random error, 
systematic error, and sample size.16
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gatherers need to be thoroughly trained to elicit exposure 
in a similar manner from cases and controls; and (3) data 
gathers should use the same memory aids to facilitate and 
balance recall between cases and controls.21

However, recall bias is not unique to case–control stud-
ies. An increasing number of health economic studies rely 
on patient survey-based, self-reported data to obtain infor-
mation on health care utilization, out-of-pocket expenses, 
health behaviors, and health status.23 The length of the recall 
period in self-reported health care questions varies among 
surveys (eg, 1, 3, 6, or 12 months), and this variation can 
affect the results of such studies.23

Observational Bias
First described by Landsberger24 in 1961, the Hawthorne 
effect is a specific form of observational bias in which the 
mere awareness of being under observation can alter the 
way in which a person behaves.25,26 The Hawthorne effect 
is a form of reactivity in which study subjects may improve 
or modify their behavior, which is being experimentally 
measured, in response to their knowing that they are 
being observed, not in response to a specific experimental 
intervention.25 For example, if they know that their behav-
ior is being observed, patients may increase their level of 
engagement and hence improve compliance with preop-
erative medication instructions on the day of surgery.27 The 
Hawthorne effect likely also plays a role in all blood utiliza-
tion programs seeking to optimize transfusion practice, if 
clinicians know that their blood ordering practices are being 
monitored and tracked.28

Such audit and feedback is widely used in quality 
improvement initiatives as a strategy to improve profes-
sional practice and clinical outcomes.29 Like the employees 
in the 1920s and 1930s at the eponymous Western Electric 
Hawthorne Works factory outside Chicago,24 modern-
day health care providers may also, at least temporarily, 

change their behavior (eg, hand hygiene protocol compli-
ance) in response to their clinical performance being overtly 
monitored.30 Alternative approaches like a proxy variable 
(eg, measuring instead the amount hand hygiene product 
used)31 or unrecognized observers (mystery or secret “shop-
pers”)32 can lessen the Hawthorne effect in clinical perfor-
mance improvement settings.

Observational bias is generally considered less likely in a 
randomized study when both groups are being observed, in 
which case, the Hawthorne effect within the groups should 
be equal.33 The Hawthorne effect is a greater concern in non-
randomized or quasiexperimental studies, or when only  
1 study group is aware that it is being observed.26

Attrition Bias
In a randomized clinical trial (RCT) or an observational 
cohort study, some participants invariably drop out of the 
study for multiple reasons.34 When such attrition occurs and 
data are missing at random, the power of the study is weak-
ened, but this is typically not a major problem.35 Conversely, 
such attrition can introduce systematic bias if the character-
istics of study participants who are lost to follow-up differ 
between the randomized treatment groups or observational 
study cohorts.36

This differential loss to follow-up is important if the 
resulting differing characteristic is correlated with the pri-
mary outcome measure(s) of the study.36 Likewise, when 
data are missing because of aspects of treatment or the dis-
ease, major bias can arise.35 Specifically, patients with miss-
ing outcome observations are more likely to be patients 
with poor outcomes.35

However, there is no definitive amount of attrition or 
loss to follow-up above which attrition bias is an acknowl-
edged problem.36 Schulz and Grimes,37 and others, have his-
torically suggested a simple “5-and-20 rule of thumb,” with 
<5% attrition or loss to follow-up probably resulting in little 
bias, >20% loss potentially posing serious threats to validity, 
and in-between levels leading to an intermediate problem.

Although this 5-and-20 attrition or loss to follow-up rule 
may have overall utility, it is less valid and applicable in 
studies with infrequent or rare outcomes.37 So-called fra-
gility of findings may therein exist, in which substantial 
changes in P values occur with small changes in the number 
of patients experiencing an event in the treatment group or 
exposed cohort.38,39

Misclassification or Informational Bias
Misclassification bias is also referred to as an informational 
bias. The mechanism that produces a systematic error in the 
information about the exposure and/or disease (outcome) 
can result in either nondifferential or differential misclas-
sification bias.16,18,40 Differential misclassification bias means 
that this bias is more prevalent in 1 group than the other, 
which is problematic. The reader is referred to more in-
depth discussions of the key distinctions between nondif-
ferential versus differential misclassification bias and their 
related analytical adjustments.41–44

Informational bias is of particular concern in medical 
research that uses medical information systems (electronic 
medical records) and administrative claims databases to 

Table. Some of the Most Commonly Encountered 
Types of Bias in Anesthesia, Perioperative, Critical 
Care, and Pain Medicine Research
Type of Bias Definition
Recall bias Recall bias occurs when 1 study group 

or subgroup has a differential recall of 
exposures or events before the onset of a 
disease

Observational bias Hawthorne effect is a specific form of 
observational bias in which the mere 
awareness of being under observation can 
alter the way in which a person (patient or 
provider) behaves

Attrition bias Attrition bias exists if the characteristics of 
study participants who are lost to follow-up 
differ between the randomized treatment 
groups or observational study cohorts

Misclassification bias A process that produces a systematic error in 
the information about the exposure and/or 
disease (outcome) results in nondifferential 
or differential misclassification bias

Selection bias Selection bias is a distortion of the study 
findings that results from the factors that 
determine study participation, specifically, 
the procedure or the way in which study 
subjects are selected
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determine whether patients have preexisting medical con-
ditions or have undergone previous procedures.45,46 For 
example, potentially confounding variables like preexist-
ing medical conditions can be under-reported or incorrectly 
reported in a hospital database or administrative claims 
database and this can occur disproportionately between 
the exposure groups of interest (eg, patients receiving 2 dif-
ferent types of anesthesia or analgesia). As a result of such 
misclassification, the estimated relationship between the 
exposure and outcome of interest can be distorted.

Selection Bias and Randomization
It is possible that the way researchers collect their study 
sample is not truly random, but instead subjects are prefer-
entially sampled to have particular characteristics.6 Selection 
bias is a distortion of the study findings that results from the 
factors that determine study participation, specifically, the 
procedure or way in which study subjects are selected.41,47

With selection bias, the relationship between the expo-
sure (or treatment) and the disease (or outcome) is funda-
mentally different for those individuals who participate or 
are enrolled in the study versus for all those who should 
have been eligible for the study, including those who did 
not participate.41

Selection bias can even occur in a RCT, if the recruiters 
and observers can guess the next group assignment with 
>50% probability.48 “When future allocations can be pre-
dicted, which is the case when masking [blinding] is absent 
or imperfect and restricted [block] randomization is used 
(ie, just about always), one can funnel healthier patients to 
one group and sicker patients to the other group.”49

Simple randomization (“complete” or “unrestricted” 
randomization), in which every study participant has an 
equal chance of group assignment, regardless of the pre-
vious participants’ allocations (analogous to repeated 
coin-tossing), is the simplest and most effective method to 
prevent selection bias in an RCT.48,50,51

However, simple randomization is infrequently used 
because researchers (and journal editors and reviewers) 
typically prefer a randomization method that generates a 
balanced number of patients assigned to each treatment 
group.48,52,53 Restricted randomization (eg, permuted block 
randomization) is thus instead applied, which results in 
similar number of patients being assigned to each treatment 
group―and thus minimizes loss of statistical power due to 
sample size imbalance―as well as better balances known 
and unknown confounders.48,51–53

Block randomization (either fixed or randomly sized) is 
also helpful to achieve balance within sites of a multicenter 
randomized trial and to achieve balance within predeter-
mined strata such as age or gender groups.

Nevertheless, we agree with others that simple random-
ization should be used more frequently than fixed-block 
randomization.48,50,52 For non–double-blinded RCTs with 
more than 200 total subjects, researchers should use simple 
randomization and accept moderate disparities in group 
sizes.50,52 For non–double-blinded RCTs with a total sample 
size of <200, researchers can apply block randomization but 
should randomly vary the block sizes and include larger 
block sizes than 10.51

The reader is referred to a more advanced discussion of 
selection bias, allocation concealment, and randomization 
design in clinical trials,54,55 in addition to a concise, practi-
cal guide on randomization and allocation concealment for 
clinical researchers.56,57

CONFOUNDING
“A simple definition of confounding is the confusion of 
effects.”16 A confounding variable (confounding factor or 
confounder) is a variable that correlates (positively or nega-
tively) with both the exposure and outcome.14 Confounding 
can be a major problem with any observational (nonran-
domized) study.14,16,58,59 Ignoring confounding in an obser-
vational study will often result in a distorted or incorrect 
estimate of the association or treatment effect.14,16,58,59 
Epidemiologists often define a confounding variable as  
1 that will alter the estimated treatment effect by 15% or 
more when not accounted for mathematically.

For example, in a retrospective database study assessing 
the relationship between general anesthesia versus neur-
axial or regional anesthesia on postoperative outcomes, 
researchers need to take into account if the general anesthe-
sia patients have more or less comorbidity at baseline than 
those receiving neuraxial or regional anesthesia. Not doing 
so would confound or “muddle” the actual treatment effect 
of the anesthetic technique.60,61

Researchers likewise assessing whether patients receiv-
ing an intraoperative blood transfusion is associated with 
greater postoperative complications compared to those 
patients not receiving a blood transfusion need to adjust for 
the fact that those receiving blood are sicker at baseline by 
adjusting for as many baseline risk factors (comorbidities) 
as possible.62 However, when the exposure groups are as 
different as in this example, it may not be possible to ade-
quately adjust for confounding.

When defining confounding, it is important to consider 
the temporal relationship between the purported confound-
ing variable and the exposure variable. A confounding vari-
able must occur or be measured before the exposure variable 
(or exposure period).58,59,63 A contributing factor that occurs 
after the exposure of interest, even though associated with 
the exposure and the outcome, would not be a confound-
ing variable. Such a variable might instead be a mediator 
variable.

A mediator variable is located along the causal pathway 
between the exposure and the outcome; it occurs a result of 
the exposure and is a contributing cause of the outcome.63–65 
Researchers need to be careful to not adjust for mediators 
when assessing an exposure versus outcome relationship, 
since doing so will tend to “washout” the treatment effect 
of interest.66

Confounding is typically not an issue in a randomized 
trial because the randomized groups are sufficiently bal-
anced on all potential confounding variables, both observed 
and nonobserved. Therefore, even though many base-
line variables such as age, body mass index, and baseline 
comorbidities may be even strongly related to the outcome 
of interest in a clinical trial, these variables are not con-
founding variables because they are not associated with the 
exposure of interest―only the outcome. In smaller clinical 



Copyright © 2017 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.
1046   www.anesthesia-analgesia.org ANESTHESIA & ANALGESIA

  E SPECIAL ARTICLE

trials, some nontrivial imbalance in baseline variables may 
occur, and such variables can be adjusted for in the analyses 
to solve the problem.67–69

The Relationship Between Selection Bias and 
Confounding
Selection bias is a common source of confounding.70 
Selection bias may lead to confounding, when 1 or more of 
the predictor variables that determine or predispose assign-
ment to the intervention also directly affects the outcome.71 
This uncorrected association of a predictor variable with 
both the intervention and the outcome can distort the treat-
ment effect of interest and thus result in a type I error, in 
which the outcome of the intervention (treatment effect) 
is falsely attributed to the intervention rather than to the 
confounding variable.71 Alternatively, selection bias and the 
resulting confounding can result in a type II error, in which 
the study incorrectly concludes that there is no treatment 
effect from the intervention itself.71 Importantly, such dis-
tortion can occur even though neither of the 2 error types 
occur.

A common and important type of confounding in clinical 
research is confounding by indication, which occurs when 
the clinical indication for selecting a particular treatment 
or intervention (eg, the severity of the illness) also affects 
the outcome.72 Confounding by indication is sometimes is 
referred to interchangeably as selection bias.47,70

Controlling for Confounding
Researchers can routinely implement study design proce-
dures to prevent confounding (eg, randomization, study 
eligibility restriction, and/or a priori participant matching), 
but most confounding is removed by statistical procedures 
in the subsequent data analysis (eg, multivariable regres-
sion models, propensity score methods, and/or instru-
mental variables) for both clinical trials and more typically 
observational studies.68,69,71–77 This will be the topic of a 
future statistical tutorial.

INTERACTION (EFFECT MODIFICATION)
Interaction among variables, also known as effect modifica-
tion, exists when the effect of 1 explanatory variable on the 
outcome depends on the particular level or value of another 
explanatory variable.14,78,79

For example, researchers might find that the effect of 
anesthetic A versus anesthetic B on the outcome of inter-
est is stronger (or even in opposite directions) for men than 
for women, indicating an interaction between effect of anes-
thetic choice and gender on the outcome.

In other words, an interaction exists when the incidence 
of the disease or outcome in the presence of 2 or more risk 
factors or exposures differs from the incidence rate observed 
or expected to result from their individual effects. If interac-
tion between risk factors or exposures is present, the factors 
are not independent in causing a specific outcome.79–82

When the joint effect of 2 or more explanatory variables 
is discernibly larger or smaller than the “sum of the parts” 
(or individual effects), there is an interaction among the 
explanatory variables.78,83 The effect can be greater than 
would be expected (positive interaction or synergism) or 

less than would be expected (negative interaction or antag-
onism).78,83 From a more rigorous, epidemiological per-
spective, synergism is fundamentally defined by and thus 
requires the presence of a positive interaction among vari-
ables.78,83 When reporting on the presence of interactions 
in their manuscript, the authors need to decide whether or 
not to report the treatment effect separately for each level 
(or subgroup) of the interacting variable. The decision on 
how to proceed can be made at least partly by knowing 
whether the interaction is quantitative or qualitative.79  
“A key principle for interpretation of subgroup results is 
that quantitative interactions (differences in degree) are 
much more likely than qualitative interactions (differences 
in kind).”84

A quantitative interaction (noncrossover interac-
tion) exists when the treatment effect on the outcome is 
in the same direction (positive or negative) for both lev-
els (or subgroups) of an interacting variable, but the size 
of the treatment effect differs significantly between lev-
els (or subgroups).79 “Quantitative interactions are to be 
expected, but may not be important clinically.”85 In such 
cases, the interaction effect thus may be interesting, but it 
may be valid to ignore the interaction and to report the 
observed effect of treatment on the outcome as the primary 
result.83,84

A qualitative interaction (crossover interaction) occurs 
when the treatment effects are in opposite directions for 
both levels (or subgroups) of an interacting variable.79 In the 
presence of a qualitative interaction, the primary result for 
the treatment effect on outcome can be reported for each 
level (subgroup) of the interacting variable.83,86

CONCLUSIONS
Bias and confounding are common potential explanations 
for statistically significant associations between exposure 
and outcome when the true relationship is noncausal. 
Understanding interactions is vital to proper interpretation 
of treatment effects.14 These complex concepts should be 
consistently and appropriately considered whenever one is 
not only designing but also analyzing and interpreting data 
from a randomized trial or observational study.14 E
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